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Fermi linearization scheme for itinerant electrons with 
Clifford variables 

Arianna Montorsi and Alessandro Pelizzola 
Dipartimento di Fisica and Uniti INFM, Politecnico di lbritio, 1-10129 Toho, Italy 

Abstract. We propose an alternative interpretation of the fermi linarization approach to 
interacting electron sytems, based on  the requirement that the coefficients of the lin- 
earized operators are Clifford-like variables, whwe anticommutator equals an unknown 
constant c. We apply the approximation to the F a h - K i m b a l l  model, explicitly solving 
the self-consistency equation for the unknown, which turns out to behave as an order 
parameter. We discuss its relation with a metal-insulator transition and some thermo- 
dynamical quantities. In particular we show that our approximation in the T = 0 limit 
reproduces exactly the Gutmiller results for the Hubbard model. 

1. Introduction 

Both systems of itinerant interacting electrons on an infinite lattice, and simple sys- 
tems of a few electrons interacting with bosons, are generally described hy Hamilto- 
nians whose dynamical algebra is infinitedimensional. Various approximation tech- 
niques have been developed in order to deal with such systems. In particular, in 
a set of recent papers [l-31 an approximation scheme was proposed, referred to as 
a fermionic linearization scheme, which can be applied to a generic many-fermion 
Hamiltonian. It consists of replacing in the Hamiltonian certain bilinear products of 
(sums of) electron creation or annihilation operators, say al and az. by terms linear 
in some fermion operator f multiplied by appropriate Grassmann-like coefficients 0, 

a l a z  + aiai 6f t f ‘ B  (1) 

where {e,@ = 0, and {e,f)  = {B,f) = 0 = { e , a i }  = {@,U!) (i = 1,~). 
The anticommutation relations of f and f f  are uniquely determined by al and a2, 
and depend on the problem studied. The fact that both the operators f, f t  and 
the Grassmann coefficients 0 ,  8 satisfy anticommutation relations guarantees that the 
bilinear products on the rieht-hand side of (1) have the same ‘statistics’ of the bilinear 
operators on the left-hand side. 
Once substitution (1) is performed, the scheme allows one to obtain the spectrum 

of the linearized Hamiltonian-after recognizing that the ‘effective’ model has a 
dynamical algebra which is a Z2-graded algebra-via an inner automorphism of the 
algebra itself (which generalizes the customaq Bogolubov rotation). 

In the present note, we propose a new view of the fermionic linearization scheme, 
which consists of requiring that the variables 0,s satisfy a Clifford-like instead of the 
Grassman-like algebra. More precisely, we set 

{ e ,  e) = c2 c~~ (2) 
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with c an indeterminate, to be defined for each specific problem. Notice that the 
requirement (2) on the 0s implies that the dynamical algebra of the linearized model 
is no longer graded, but simply a Lie algebra. In other words, we require that the 
8s behave as operators rather than anticommuting numbers. Indeed, by inspection 
of (1) one can easily verify that, in the simple case in which a, and a2 are single- 
electron operators, and { f , f t ]  = 1, equation (l), with c = 1, maps a two-electron 
operator into another two-electron operator, hence the approximation of the right- 
hand term of (1) becomes exact. In general, this is not true, and a value of c has 
to be determined self-consistently according to (1). So the self-consistency equations 
reconduct the exact results for the linearized model to approximate (mean-field-like) 
results for the original Hamiltonian. 

In the following, we will use this approximation to the solution of the Falicov- 
Kimball model. The latter gives a very simplified description of a system of itinerant 
fermions interacting only locally. In this case, prescription (1) is applied to the 
itinerant pari of the Eiamiiionian, reducing it Io an effective singie-site operator, 
while it leaves unchanged the interaction term. Thus the resulting approximation in 
principle goes well beyond the standard weak-coupling mean-field theory, and indeed 
it turns out to be capable of describing a metalinsulator transition. 

Let us observe that the approximation (2) was already used in a different con- 
text [4] with a fixed value for c, i.e. c = 1. 

A Montorsi and A Pelizzola 

2. The Falicov-Kimball model 

The Falicov-Kimball model [5] provides a very simple description of large systems of 
itinerant interacting fermions, by considering two different species of electrons (say 
with up and down spin) on a lattice A, one of each itinerates on A, the electrons 
with opposite spins being fiied at their sites, and assuming that the electrons interact 
only via an on-site Coulomb repulsion term. The grand-canonical Hamiltonian reads 

HFK = -P,, NI - p,i DI - 21 A b $  t U NIDI (3) 
1 I ( I d  I 

where t > 0 is the hopping amplitude, and U > 0 is the local electron-electron 
repuision. Ai ,  A, are operators which create and annihiiate the itinerant eiectrons 
({A1,A,} = 0, {A/,A,}  = &,,,I, NI = A/Al,  i ,  j E A), and (i, j) stands for non- 
oriented nearest neighbours (NN) in A. Moreover DI is the number operator of the 
non-itinerant electrons. As the operators Cl  N I  and Cl D, both commute with the 
Hamiltonian, the chemical potentials pn and pd allow one to f i  the average number 
of electrons of the two species. 

1 ne rauwv--Nmoaii mwei  was inirwuwu ~ o r  sruuyuig me mew-msurarur ~ a n -  
sition in transition metal oxides, and can be considered as a simplified version of the 
Hubbard model [6]. The exact statistical mechanical solution for the model described 
by H,, is known only for large dimensions [7]. However, a few general theorems 
are known [E] for the symmetric (or neutral) case p,, = pd = U / 2 ,  and in partic- 
ular an Ising-like phase transition is expected for dimension D 2 2 at some critical 
temperature, whose value should vanish both for small and large U. Moreover, there 
are a number of investigations of the ground-state phase diagram depending on the 
configuration of fiied spins [9]. Also, a strongcoupling ( U  >> 1 )  thermodynamic 
mean-field theory-based on the D = cc exact solution-was proposed [lo]. 

".L. --....~~ V,!~.~C.<,  ~ . . . d - ,  ...~.. >~ ..A c.. .~ > ~ ~ ! _ _  .L. _.... 1 ~.-- 
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The fermionic linearization approach 11-31. mentioned in the introduction, also 
provides a powerful approximation scheme for Hubbard-like models in the strong- 
coupling l i t .  In fact it treats in an exact way the Coulomb interaction term, whereas 
it ac$ only on the hopping term. Let us write the latter as 

A + A  - 2 (@,+A, + A,+@,) J - 2  , 
It J) 

(4) 

with 0, = (1 / q )  A,, q denoting the number of nearest neighbours of a site in 
A. Of course, the operators 0, have non-trivial anticommutation relations among 
themselves as well as with the A,s. On the other hand, in I1-31 the 0 , s  were 
approximated by variables 6,s anticommuting among themselves as well as with the 
fermion operators, i.e. {61,B,) = 0 = {gl,OJ}, ( g , , A , )  = 0 = { 6 , , A , ] ,  Vi,j E A. 
The former prescription is exact only for i and j far enough, depending on the 
lattice A, whereas it is definitely too simple for i and j coinciding or having nearest 
neighbours in common. 

Here we propose to improve the fermionic approximation scheme by replacing 
the operators 0, by variables 8, still anticommuting with the fermion operators, and 
satisfying the following algebra (which is a straightforward generalization of (2)) 

!ei, Qjj c2 qJ {Rijaj)=n: (5) 

Once the above approximation is inserted into (3), one obtains a reduced Hamiltonian 
'HFK which is a sum over lattice sites of single-particle Hamiltonians, 'HI, commuting 
with each other: 

31i=-p ,Ni-pdDi-1~c( i i iAi+Afr) l )+  UNiD, (6) 

with 17, = 6,/c,  so that { i i , , ~ , )  = 4,. 
The D,s are to be considered as classical, king-like, variables, whose two possible 

eigenvalues 0 and 1 label two orthogonal projections of 71, = 31/n)fB'H{1). The prob- 
lem of finding the spectrum of Hamiltonian (3) is thus reduced, after linearization, 
to that of diagonalizing the local effective Hamiltonian 'HiDi). In order to do it, one 
should first identify the dynamical algebra, A, of (6); it is easily verified that the latter 
coincides with u(2), generated by 

A = 4 2 )  = {NI f 7171 i VIA, f Ai%} . (7) 

The transformation which rotates the Hamiltonian into its diagonal form gFK is then 
obtained by acting on 'Hx,(D') with 

- 1  
- [Z ,  [ Z ,  . . . , [ Z , . ] .  . . I ]  n !  exp (ad Z )  = 

"=O 

where 2 is an appropriate skew-Hermitian non-Cartan element of A, 2 = p(q,A, - 

imphes 
r t  \ ..!. ..- ;,. :=-.I .L^A.L^ "t...:"- - & - - L - l , "  -,,, n Hi V!,. I1 1s easuy "enlle" lllal "1G L.1I"IL.C y = b a l l 1 1  ( ' I  , " UI - f in ) ,  ivitl: 7 = cql, 

- pd Dl (8) f i ~ ~  = $ [ ~ l ( f l l ~ l  + NI) f dm(fhr)l - 
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with e, = U D ,  - fin; SFK is manifestly diagonal. 

in that the partition function Z is immediately obtained from (8) as 

A Monrorsi and A Peliuola 

The result (8) is also interesting from the point of view of statistical mechanics, 

Predictions for physical quantities can then be obtained from Z once the average 
numbers of electrons of the two species are fixed through the chemical potentials, 
according to 

where ( 0 )  denotes the thermodynamical average in the Gibbs ensemble of operator 
0, i.e. 

--.in.?. 
exp ( -p'H;- ' 'J (*j = z-? 

Ni,DB,+lv=O,l 

E 2-1 exp (adZ)(*)exp(-P3iFK). 
N~,D,.tlv=O,l 

Moreover, in order to have quantitative predictions, a numerical value for c still 
has to be self-consistently determined. Indeed, the prescription of substituting in the 
hopping term the 0, operators with the 0,s can be implemented once more in (4), 
giving rise to the selfconsistency equation 

(W, + A i d  = Wij4 (11) 

in which we have assumed translational invariance of the lattice, implying q, 
A. 

we notice that (lob) can be solved explicitly for w d ,  and gives the result 

7,Vi  E 

The three equations (lOa), (lob), and (11) have interesting features. First of all, 

Moreover, it is easy to check that (11) always factorizes a solution c = 0, which corre- 
spond to the insulating behaviour. Besides this solution, in general the system formed 
by (1Oa)-(11). with pd given by (12), is highly nonlinear, and must be dealt with nu- 
merically. It turns out that it has different non-zero solutions. The physical one is 
to be chosen as that which minimizes the Gibbs free energy f, f = -( 1/p) In 2. In 
the next section we shall discuss the results of the numerical analysis, as well as the 
analytical results which can be obtained in some Limiting cases. 
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3. Results and discussion 

In figure 1 we report the mean-field parameter c versus temperature k T / q t ,  at half- 
filling and for the symmetric case n = d = +. In this case it is easy to check that 
the solution to (10.1)-(10.2) is p,, = pld = U / 2 .  c is plotted for different U values, 
and exhibits a typical order-parameter-like behaviour. For U = 0 (non-interacting 
case) it rises from zero, in the high-temperature regime, to 1, at T = 0. For generic 
U < 4qt,  it is possible to show rigorously that, in the limit T -+ 0, c reaches a value 
c,, given by 

(13) c2 - 1 - LO2 
0 - 16 

where = U / q t .  This suggests that the value c = 1 used in [4] is correct at half- 
filling, only in a low-temperature non-interacting regime or for D = m. On the 
contrary, for U > 4qt, the only solution to (11) is c = 0. 

5 

Flgure 1: c v e n u  kTlqt at different 0 values: 0 = 0 (full curve), 0 = 1 (broken 
curve), U = 2 (chain curve). 

The expression (13) for c,, clarifies the physical meaning of the parameter C. 
Indeed, recalling that on a hypercubic lattice q is twice the dimension of the lat- 
tice, (13) reproduces exactly the Gutmiller result [ll] for the discontinuity in the 
single-particle occupation number at the Fermi surface, obtained for the conven- 
tional Hubbard model when T = 0. This is not surprising as, on the one hand, 
the Gumiller result for the Hubbard model was in fact obtained by neglecting the 
kinetic energy of one species of electron, thus in an approximation very similar to 
that at the basis of the Falicov-Kimball model. On the other hand, according to (4), 
(9, and (ll), at half-filling c coincides with the expectation value of the hopping 
term, and hence is related to the discontinuity in its Fourier transform. 

Notice that when U = 0, co = 1, and the ground state has all the electrons below 
the Fermi level. For any c # 0, the ground state has some electrons above the Fermi 
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level, hut the gap is still there, and, according to (3, the generic lattice site on which 
one has confined the linearized Hamiltonian is still interchanging fermions with the 
rest of the lattice. When co = 0, on the other hand, the gap in the density of states 
disappears, and at half-filling we have exactly one electron per site. In this case, the 
remaining part of the lattice behaves as a system of correlated ‘average’ fermions (i.e. 
as if they were frozen at their own sites) and we are in presence of an insulating 
phase. 

The above analysis suggests that c may be able to describe the transition from 
a conducting to an insulating state. Indeed, again in agreement with the Gutzwiller 
result, at T = 0 we find that the double occupancy expectation value, P = ( N , D , ) ,  
vanishes precisely at 0 = 4. Explicitly, analytic calculation shows that 

A Montorsi and A Peliaola 

It is worth noticing that the result (14) coincides with the exact result both in the 
limit 0 = 0 and in the limit 0 > 1. 

A deeper analysis of figure 1 shows that the transition from non-zero to vanishing 
c is of different order depending on the value of 0. Indeed, by requiring that (11) 

I? = U,, where U, is solution of 
&& v&y&hB airifid I C ;  ~ 6, ofii c & ~  vzr>j ihat theis c.s.s a ir;-cizca; 

ut = -  ut 
2(1-U,2 /8)  2 ’ 

tanh 

One finds a numerical value U, = 1.845. For 0 smaller than U, the transition is 
second order, and the critical temperature is found analytically as the solution T, of 
the following equation (obtained by requiring that (ll), upon factorizing the c = 0 
solution, still vanishes for c = 0): 

0 0  
40,  2 

tanh - = - 

with 0, = kT,/qt, and k the Boltzmann constant. On the other hand, when 0 
is larger than U,, the transition is first order, and the critical temperature can be 
evaluated numerically. Figure 2 shows the behaviour of T, versus 0 in the two 
regions. The value 0 = 4 correspond to the vanishing of both the critical temperature 
and eo. 

Figure 2 can he compared with the rough estimate of the critical temperature of 
the long-range order phase whose existence is proved for the Falicov-Kimball model 
in [8]. If one asumes that the phase with c # 0 could possibly be the longrange 
ordered phase, the qualitative behaviour of T, is in agreement with that given by 
Kennedy and Lieh for large U, whereas it is in contmt with the latter for vanishing 
U. One should notice however that our approximation is expected to be more realistic 
for finite U. 

Finally, in figure 3 we give the behaviour of c versus T for various fillings, still 
for a symmetric state (n = d). The figure shows that the transition is present at 
different fillings, again in agreement with the features of the long-range ordered 
phase described in [8]. 
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Figure 2. k T , / g t  versus 0: full curve represents second order transition; broken curve, 
first order transition. 

1.5 

Flgure 3. c versus kTlqt at 0 = 1 and different fillings, in the neutral cas6 (n = d) :  
n + d = 1 (full curve), n + d = 0.8 (broken curve), n + d = 0.6 (chain curve). 

4. Conclusions 

In this paper we have proposed an improvement of the Fermi linearization technique 
for electron systems, based on the requirement that the coefficients of the linearized 
operators are Clifford-like variables, with their anticommutator equal to an unknown 
constant C. As an example, we applied such a method to the Falicov-Kimball model, 
also giving the self-consistency equation which determines the unknown. The latter 
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turned out to behave as a true order parameter, which at T = 0 and at half-filling 
was shown to coincide with the discontinuity in the single-particle occupation number 
at the Fermi level in the Gutnviller approximation to the Hubbard model. The 
behaviour of c was thus related to the existence of a metal-insulator transition, which 
again was shown to coincide at T = 0 with that hypothesized by Brinkman and 
Rice [12]. 

The above results suggest that our approximation could be a natural extension of 
the Gutmiller approach to the case T + 0. They also provide a physical interpre- 
tation to the method, which consists of replacing the hopping term by a term which 
locally still allows the creation and annihilation of electrons, but with an amplitude 
proportional to the discontinuity in the single-particle average number at the Fermi 
surface. 

Moreover, contrary to the case in which the coefficients of the linearized operators 
wcrc uiassuiaiui vaiiauim, UIG p ~ c x n r  appru.uulauun pruuu~w uuii-riwiai ~cjsuiw 
even in the case U = 0. 

This paper was intended as a presentation of the method, and little effort was 
devoted to the numerical results in the various cases. Nevertheless, in view of the 
promising results obtained, work is in progress in order both to provide a complete 
phase space at T = 0 and to discuss the T # 0 behaviour of the physical quan- 

approximation [3] should give more accurate quantitative results. 
Finally, let us stress that the method is of further generality. In particular, we 

expect that it can be straightfonvardly applied to the conventional Hubbard model, 
as well as to generalized Hubbard models which have been proposed for the study of 
high-T, superconductivity. 

A Montorsi and A Peliaola 

... ̂_^ r.-"""-"-- .."-:"I.,-" .t.- ------I ~ :..--.-- - - ~  .-:..:..I 3- 

t i ~ = ,  w p  pXp'& that i" this case the of a &ster Betbe lJ'sion of 

Acknowledgments 

The authors gratefully acknowledge stimulating discussions and a careful reading of 
the manuscript by Mario Rasetti. One of the authors (AM) also thanks Dan Mattis 
for letting her h o w  about reference 141. 

References 

[I] Montorsi A, Rasetti M and Solomon A I 1987 Pkys. Rev. Len. 59 2243 
[2] Montorsi A, Rasetti M and Solomon A I 1989 h r .  I, Mad. Pkys. B 3 247 
[3j Ecchi M, i iv i  K and ivioniorsi A i99i hi .  i %mi Phys. B 5 
[4] Prabasaj P and Mattis D C 1991 Phys. Rev. B 44 2384 
[5] Falimv L M and Kimball J C 1969 Pkys. Rev Len. 22 997 
[6] Hubbard J 1963 Prae. R. Sae. A 276 238; 1964 Ploc. R. Soc. A 277 237 

Gutmiller M C 1963 Pkys. Rev. Leu 10 159 
[7j Brandt U and Mielsch C 1989 I. Phys. E: AI. Mol. Opr. Pkys. 75 365; 1990 1. Pkys. B: AI. Mol. Opr. 

!&! Xennedy T and Lirb E Ii ?9& Phyim 138.4 322 
[9] Crruber L, Wanski J, Jedrzejiski J and Lemberger P 1990 Pkys. Rev. B 41 2198 

Lcmkrger P 1992 J.  Pkys. A: Mark. Gen. U 715 
[IO] Jsnis V 1991 1. Pkys. E: AI. Mol. Opr. Pkys, 83 227 
[Ill Gutmiller M 1%5 Pkys. Rev. A U 7  1726 
[12] B r i n k "  W F and Rice T M Phys. RN. B 2 4302 

Pkys. 79 295 


